Electrochemically Initiated Synthesis of Polyacrylamide Microgels and Core-shell Particles

Abstract
Herein, we developed a simple procedure for synthesizing micrometersized microgel particles as a suspension in an aqueous solution and thin films deposited as shells on different inorganic cores. A sufficiently high constant potential was applied to the working electrode to commence the initiator decomposition that resulted in gelation. Under hydrodynamic conditions, this initiation allowed preparing different morphology microgels at room temperature. Importantly, neither heating nor UV-light illumination was needed to initiate the polymerization. Moreover, thin films of the cross-linked gel were anchored on different core substrates, including silica and magnetic nanoparticles. Scanning electron microscopy and transmission electron microscopy imaging confirmed the microgel particles’ and films’ irregular shape and porous structure. Energy-dispersive X-ray spectroscopy indicated that the core coating with the microgel film was successful. Dynamic light scattering measured the micrometer size of gel particles with different combinations of acrylic monomers. Thermogravimetric analysis and the first-derivative thermogravimetric analysis revealed that the microgels’ thermal stability of different compositions was different. Fourier-transform infrared and 13C NMR spectroscopy showed successful copolymerization of the main, functional, and cross-linking monomers.
Description
Keywords
Citation
Nabila Yasmeen, Jakub Kalecki, Pawel Borowicz, Wlodzimierz Kutner, and Piyush S. Sharma, Electrochemically Initiated Synthesis of Polyacrylamide Microgels and Core-shell Particles, ACS Appl. Polym. Mater. 2022, 4, 452−462. https://doi.org/10.1021/acsapm.1c01359
Belongs to collection