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INTRODUCTION
To quote John Walker, the first person to brute-force the problem [1]:

Pick a number. Reverse its digits and add the resulting number to the original number. If
the result isn't a palindrome, repeat the process. Do all numbers in base 10 eventually
become palindromes through this process? Nobody knows.

After  the  three  years  of  computing  that  gave  its  title  to  Walker  paper,  many  others
became interested in the issue. The problem itself is older, and was already mentioned in
David Wells book on the subject of interesting numbers [2]. Many people worked on the
quest over the decades. The numbers whose existence is questioned were christened
Lychrel by Wade VanLandingham, who maintains a comprehensive web site dedicated to
them [3].

This research poster describes the implementation of the p196_mpi code, a distributed
code dedicated to compute iterations of the palindrome quest as fast as possible. As of
the end of 2013, this is the fastest known code to work on the problem. It was the first
code to break the 300 million digits mark and subsequently to reach 600 million digits.

DISTRIBUTED ALGORITHM & IMPLEMENTATION 
The distributed algorithm is essentially  the splitted computation-propagation algorithm
using very large sub-arrays. The entire array of digits is split in many sub-arrays, one per
process.  All  sub-arrays  are  computed  in  parallel,  each  using  an  optimized  kernel
implementation.The carry are virtually "stored" by being sent to the next sub-array, then
propagated;  this  is  repeated  until  there  is  no  more  non-zero  carry  to  propagate
(propagating through more than one large sub-array is exceedingly rare in practice). In
the actual implementation, the whole array is splitted into two sub-arrays per process.
The first process owns the first and last sub-arrays, the second process owns the second
and next-to-last sub-array, and so on, until the last process owns the two middle sub-
arrays.  The reason is  data availability:  computing the first  digit  of  the first  sub-array
requires the last digit of the last sub-array, from the "reverse" part of the "reverse-and-
add" process. Storing them in the same process saves a large amount of data exchange
between processes. However, the sub-arrays are almost never perfectly aligned. First,
the number of digits is unlikely to be an integer multiple of the number of processes.
Second, there is a need for expansion, are each carry propagation beyond the most
significant digit increases the digit count by one. So the last sub-array is smaller than the
others for expansion.
     The sequence of operations illustrated in figure 1 is therefore:
    1. Check whether we already have a palindrome and should stop (step 1);
    2. Do the additions & carry propagation inside both sub-arrays (step 2);
    3. Send carries for both sub-arrays to neighboring processes, propagate. It-
       erate if needed (step 3);
    4. Process 0 lets everyone know whether there is an extra digit (step 4);
    5. Send new values that are needed for the next iteration to the neighboring
       processes (step 5).
     The last step is required because of the imperfect matching of sub-arrays inside each
process. This is a critical part: if the last sub-array is much smaller than the others, then
a lot of data exchange is required. But the last sub-array grows, and if it is close in size to
the others, it will quickly catch-up in size. Whenever the last sub-array becomes as large
as the other, a redistribution of data is needed (step 6 in figure 1), growing all sub-arrays
evenly  at  the  expense of  the  last  sub-array.  After  each  such  redistribution,  the  size
discrepancy  is  maximal,  and  therefore  the  cost  of  the  data  propagation  (step  5)  is
maximal. This cost goes down as the last sub-array grows, and it is minimal just before a
new redistribution is required.

Figure 1. Overview of the distributed algorithm

Website where you can find implementation and more information:
http://www.dolbeau.name/dolbeau/p196/p196.html

PERFORMANCE RESULTS 
Performance and scalability of the program were analyzed using multiple generations of Intel
vector instruction sets: SSE3, SSSE3 and SSE4. SSSE3 introduces a shuffle instruction which
helps with data mirroring, while SSE4 introduces data extraction and comparison instructions
which help with carry propagation. SSE4ASAVX represents the SSE4 intrinsics compiled for an
AVX target, and thus using the VEX-encoded 3-operands AVX-128 instructions.

Figure 2. Graphic visualization of performance of the consecutive iterations of the
program for the numbers range of 600 000 000 and a platform consisting of Intel Xeon

E5-2697. 

The results in Figure 2 are the average performance in digits computed per seconds over a
thousand digits starting at a size of 600 millions digits, which was found to be a sufficient time to
be representative. Processes were running on a single Intel Xeon E5-2697 processor of the "Ivy
Bridge"  family,  which  has  12  physical  cores  (Hyper-Threading  was  enabled  but  not  used).
Everything was compiled with the latest Intel compilers (14.0.2). Clearly, vector instructions are
indispensable for good performance, as the pure C code doesn't reach the theoretical maximum
of approximately one third the memory bandwidth. All others can reach that maximum, but the
SSE3 version, with its less efficient mirroring, requires more cores. On a small number of cores
the relative order is the one that can be expected (SSE4ASAVX being fastest, followed by SSE3,
SSSE3, SSE3 and C). Once the performance is memory-bound, there is no longer a clear order
as the differences are of the order of the measurement accuracy.

CONCLUSION & ALTERNATIVES 
As  of  late  2013,  this  is  the  fastest  known  implementation  of  the  base-10  reverse-and-add
algorithm. At least two improvements could theoretically be made to the code. First, during the
actual  reverse-and-add  computations,  the  data  could  be  used  to  compute  both  sub-arrays
simultaneously. This would theoretically save on memory bandwidth, a major bottleneck of the
current implementation. Second, each digit is currently stored in a full byte. If each digit was
stored in a nybble (half a byte), then the memory bandwidth requirement would be cut in half
(along with the memory size itself). However, this would break the block-level carry propagation
algorithm, as it effectively requires the ability to store up to 20 different values in the storage
space of a single digit. So a different algorithm, still mostly memory-bound, would be required to
effectively use this alternate data storage format. Finally, no matter how fast the reverse-and-add
process, such code will  never prove the existence of Lychrel numbers. While it  is extremely
unlikely that a palindrome will be found, not finding one does not mean there isn't one. Only a
theoretical demonstration would work, as exists for some other bases.
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