Content of pyrrolizidine alkaloids (senecionine and senkirkine) in *Tussilago farfara* L. plants cultivated *in vitro*

MARIOLA DREGER¹, ANNA KRAJEWSKA-PATAN², MAŁGORZATA GÓRSKA-PAUKSZTA³, MARZENA PIESZAK², BOGNA OPALA³, AGNIESZKA GRYSZCZYŃSKA³, ARTUR ADAMCZAK⁴, PRZEMYSŁAW Ł. MIKOŁAJCZAK², WALDEMAR BUCHWALD⁴

¹Department of Biotechnology
Institute of Natural Fibres & Medicinal Plants
Wojska Polskiego 71B
60-630 Poznan, Poland

²Department of Pharmacology and Experimental Biology
Institute of Natural Fibres & Medicinal Plants
Libelta 27
61-707 Poznan, Poland

³Quality Control of Medicinal Products and Dietary Supplements Department
Institute of Natural Fibres & Medicinal Plants
Libelta 27
61-707 Poznan, Poland

⁴Team of Botany and Agriculture of Medicinal Plants
Department of Botany, Breeding and Agricultural Technology
Institute of Natural Fibres & Medicinal Plants
Kolejowa 2,
62-064 Plewiska/Poznań, Poland

⁵Department of Pharmacology
Poznań University of Medical Sciences
Rokietnicka 5a,
60-806 Poznan, Poland

*corresponding author: mariola.dreger@iwnirz.pl

Summ ary

Tussilago farfara L. (family *Asteraceae*) is a valuable medicinal plant that has been used as a cough suppressant and as an antibacterial and anti-inflammatory drug. Mucopolysac-
Charides, flavonoids, sterols, phenolic acids and pyrrolizidine alkaloids (PAs) are the main active compounds of coltsfoot. Due to hepatotoxic properties of some pyrrolizidine alkaloids, raw materials that contain PAs should be monitored and determined. The aim of present work was to establish nodal cultures of *Tussilago farfara* and to determine the content of senecionine and senkirkine in plants propagated in *in vitro* conditions. Eleven clones of coltsfoot derived from Polish natural populations were established. Rhizome buds were used as explants for the initiation of *in vitro* cultures on MS (Murashige and Skooge) medium. Every six weeks the shoots and leaves were collected and dried. The HPLC method was applied for the identification and determination of senecionine and senkirkine. Content of pyrrolizidine alkaloids varied significantly depending on origin (population). An average sum of alkaloids (senecionine and senkirkine) ranged from 1.23 to 10.47 mg/100g d.w. that corresponds to 0.0013–0.011%, respectively.

Key words: *Tussilago farfara* L., nodal cultures, pyrrolizidine alkaloids

INTRODUCTION

Coltsfoot (*Tussilago farfara* L.) is a perennial plant, from *Asteraceae* family widespread in Eurasia. It is a valuable medicinal plant that has been used in traditional and contemporary medicine as a cough suppressant in upper respiratory tract disorders, asthma, bronchitis and as an antibacterial and anti-inflammatory drug. Leaves are herbal raw material. The coltsfoot’s pharmacological properties are: antibacterial [1], anti-inflammatory [2, 3], antioxidant [3] and also some neuroprotective activities [4, 5]. Coltsfoot raw material contains: mucopolysaccharides, pectin, inulin, terpenes: tussilagen, α- and β-amyrin, arnidol, faradiol [6], sterols: taraksasterol, β-sitosterol, esculetine, flavonoids (kaempferol, quercetin and its glycosides, rutin, hiperoside), phenolic acids (ferulic, caffeic, chlorogenic, galic and p-hydroxybenzoic acids), fatty acids (stearic and palmitic) and also bisabolen epoxides [2]. Coltsfoot also synthesizes pyrrolizidine alkaloids: senkirkine [7], senecionine [8], tussilagine and their isomers [9]. Senkirkine and senecionine are undesirable due to their toxic properties. Pyrrolizidine alkaloids that consist of an unsaturated necine base are toxic for humans and other mammals, whereas those with saturated necine moiety are non-toxic. During detoxification of PAs (metabolized by cytochrome P450 enzymes in liver), necine base is oxidized to pyrrolic esters (dehydropyrrolizidine derivates) that form adducts with proteins and nucleic acids resulting in cell toxicity or tumorigenecity [10-12]. Pyrrols react with endothelial cells of hepatic veins leading to hepatic Veno-Oclusive Disease (VOD) and liver failure [13]. PAs have been also detected as a contamination derived from animals food in milk, meat, eggs or honey [12]. The problem of PAs toxicity led to the legal restrictions in the sale of herbal products. The health authorities decided to limit the allowed dose of PAs to 10 μg per day in herbal products [14]. The legislation of some countries is more restrictive, for instance in Austria, registration of any plant products containing senecionine or senkirkine is not allowed.

The aim of present work was to establish nodal cultures of *Tussilago farfara* and determine the content of senecionine and senkirkine in plants propagated in *in vitro* conditions.
MATERIAL AND METHODS

Tussilago farfara plants from eleven natural Polish populations were collected in order to establish nodal cultures. The plants originated from scattered localities in Western and South-Western part of Poland. Plant material was collected in October of 2007 and 2008. Rhizome buds were used as the explants due to short time of seed germination ability. The buds were sterilized as follows: 70% ethanol with a drop of Tween (15–30 s), commercial bleach (5% of active sodium hypochloride; from 10 to 20 min.) rinsed in sterile, distilled water four times. Nodal cultures were induced on MS medium [15] supplemented with sucrose (3%), with no addition of growth regulators. First shots were obtained within 2–4 weeks. The subsequent procedure was applied in accordance with the method described by Wawrosch et al. [16]. Cultures were maintained at standard conditions (temperature of 23±1°C, 16/8 h light/dark photoperiod, illumination of 40–50 mmol m⁻²s⁻¹ photosynthetic photon flux intensity provided by cool white fluorescent light) in culture jars (250 ml capacity), 6 explants per each jar. The culture cycle lasted for nearly 6 weeks. After this period, the shots were cut into one-nodal fragments and transferred to fresh medium. Root induction was followed on the same medium within two weeks. Shots were collected for phytochemical analyzes every 6 weeks. Raw material was weighted and dried at room temperature.

Determination of pyrrolizidine alkaloids (senkirkine and senecionine) in plant material obtained from *in vitro* cultures was performed using HPLC method. Dried and powdered sample (5.0 g) extracted with 50% (v/v) methanol and water-methanol extracts were obtained. An assay was performed using HPLC-DAD Agilent 1100. Chromatographic separation was achieved on Hypersil BDS C8 250 × 4.6 mm, 5 μm (Thermo) column, run with A mobile phase containing 5 μM sodium hexanesulphonate in 1% phosphoric acid, and B phase – acetonitrile. Gradient eluent was set as follows: 0–7 min. 20%B, 7–25 min. 40% B, 25–28 min. 60% B, 28–33 min. 80% B, 33–35 min. 80% B, 35–40 min. 20% B. Flow rate: 0.8 ml/min.; temperature: 40°C. The UV detection wavelength was set at 220 nm. Identification and quantification of pyrrolizidine alkaloids was based on the retention time and comparison of UV spectra with authentic standards of senecionine and senkirkine.

All experiments were conducted in triplicate and values are expressed as means ± SD.

RESULTS AND DISCUSSION

Content of pyrrolizidine alkaloids varied significantly depending on the origin of clone line (population). An average sum of alkaloids (senecionine and senkirkine) ranged from 1.23 to 10.47 mg/100g of d.w. (fig. 1) that corresponds to 0.0013%–0.011%, respectively. Senecionine was detected at a level from 0.11 to 0.85 mg/100 g of d.w. (Fig. 2). Senkirkine was produced at much higher level – from 1.07 mg/100 g of d.w. to 9.18 mg/100 g of d.w. (fig. 3). It was calculated as equivalent of 10.72 ppm (locality BB) and 96.23 ppm (locality KK) of senkirkine, respectively.
Content of pyrrolizidine alkaloids (senecionine and senrkine) in *Tussilago farfara* L. plants cultivated *in vitro*

Figure 1.

Content of PAs in coltsfoot plants obtained from *in vitro* cultures. Values are expressed as mean ±SD of triplicate analysis. Localities: PD-Poznań-Dębiec, JK-Jóźwin, KK-Kamienica, SK-Szyszłowo, PC-Puńców, BB-Brenna-Bukowa, SO-Słomowo, PN-Poznań-Naramowice, BD-Borek-Deszczno, RS-Resko, PL-Plewiska

Figure 2.

In general, PAs content is variable and depends on genotype, phase of growth and organ deposition. There is a very limited numbers of reports concerning PAs content in material derived from in vitro cultures. Wawrosch et al. [16] obtained nodal cultures from seeds and found free of alkaloids clone (Wien) that was patented. Micropropagated plants acclimatized and transferred to field conditions produced senkirkine at a level from 0.5 to 46.6 ppm. They also reported a very high concentration of senkirkine (up to 200 ppm and higher) in some clones. Senkirkine is the main pyrrolizidine alkaloid produced by Tussilago farfara plants. Senecionine is not always detected in raw material, usually its level is very low. According to Röder [17] coltsfoot raw material contains from 0.1 to 150 ppm of senkirkine. Mroczek et al. [18] detected 0.45 ppm of senkirkine (using HPLC method) in leaves and flowers and 92.8 ppm in rhizomes of coltsfoot. The amount of deposited senkirkine in raw material depends on the origin, part of plant and harvest time. Buchwald and Adamczak [19,20] reported that leaves of coltsfoot harvested in summer (June and July) contained from 0.5 μg to 136 μg PAs in 100 g d.w.

CONCLUSION

Obtained results fall within the ranges reported by other authors, although content of PAs in in vitro material is higher than obtained from in vivo conditions. Usually, the material from in vitro cultures contain much lower level of alkaloids.
compared to the intact plants. Probably some factors of in vitro conditions (temperature, light, nutrients etc.) or completely different life cycle are favorable for PAs biosynthesis. The subsequent studies are needed to confirm or to exclude this assumption.

ACKNOWLEDGEMENT

The work was supported with a grant by Ministry of Science and Higher Education No. N 405 306 236.

The authors express their special thanks to Małgorzata Grześkowiak for her excellent technical assistance.

REFERENCES

16. Wawrosch Ch, Kopp B, Wiedenfeld H. Permanent monitoring of pyrrolizidine alkaloid content in micropropagated Tussilago farfara L.: a tool to fulfill statutory demands for quality of coltsfoot in...
Austria and Germany. ISHS Acta Horticulturae 530 International Symposium on Methods and Markers for Quality Assurance in Micropropagation 2000:469-472.

ZAWARTOŚĆ ALKALOIDÓW PIROLIZYDYNOWYCH (SENECJONINY I SENKIRKINY) W ROŚLINACH PODBIŁU POSPOLITEGO HODOWANEGO W KULTURACH IN VITRO

MARIOLA DREGER1*, ANNA KRAJEWSKA-PATAN2, MAŁGORZATA GÓRSKA-PAUKSZTA3, MARZENA PIESZAK2, BOGNA OPALA3, AGNIESZKA GRYSZCZYŃSKA3, ARTUR ADAMCZAK4, PRZEMYSŁAW Ł. MIKOŁAJCZAK2,3, WALDEMAR BUCHWALD4

1Zakład Biotechnologii
Instytut Włókien Naturalnych i Roślin Zielarskich
Al. Wojska Polskiego 71B
60-630 Poznań

2Zakład Farmakologii i Biologii Doświadczalnej
Instytut Włókien Naturalnych i Roślin Zielarskich
ul. Libelta 27
61-707 Poznań

3Zakład Badania Jakości Produktów Leczniczych i Suplementów Diety
Instytut Włókien Naturalnych i Roślin Zielarskich
ul. Libelta 27
61-707 Poznań

4Zespół Botaniki i Agrotechniki Roślin Zielarskich
Zakład Botaniki, Hodowli i Agrotechniki
Instytut Włókien Naturalnych i Roślin Zielarskich
ul. Kolejowa 2
62-064 Plewiska/Poznań
Słowa kluczowe: Tussilago farfara L., kultury węzłowe in vitro, alkaloidy pirolizydynowe